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Abstract. We show that two natural approaches to quantum gravity coincide.
This identity is nontrivial and relies on the equivalence of each approach to
KdV equations. We also investigate related mathematical problems.

1. Witten's Conjecture

1.1. Two-Dimensional Gravity (ies). Quantum gravity, although not well-de-
fined, looks like integration over the (infinite-dimensional) space of rieman-
nian metrics on manifolds modulo diffeomorphisms. There are at least two
mathematically consistent approaches to two-dimensional gravity.

The first one was developed by [KB, DS, GM] and can be called "enu-
meration of triangulations." Any triangulation of the surface determines
some singular metric obtained from the arrangement of equilateral triangles.
One can imagine that when the number of triangles tends to infinity these
singular metrics approximate "random metrics" on surfaces. Thus we are led
to the problem of finding the asymptotics of the number of triangulations of
surfaces of fixed genus into the given growing number of triangles. It was
shown (using Feynman diagram techniques) that this problem together with
some modifications is equivalent to describing the asymptotic behaviour of
the integrals Jexp(tr P(X)} dX, where X runs over the space of hermitian
N x TV-matrices, N -»oo and P is a polynomial depending (in some way) on
N. These integrals were evaluated using orthogonal polynomials. It turns out
that discrete Toda lattice equations hold. In the limit the Korteweg-de Vries
equation arises. The partition function of the two-dimensional gravity for
this approach is a series in an infinite number of variables and coincides with
the logarithm of some τ-function for KdV-hierarchy.

Another approach is to choose some specific action. Using supersymmetry
the integral over the space of all metrics reduces to the integral over the finite-
dimensional space of conformal structures. The last integral has a cohomolo-
gical description as an intersection theory on the compactified moduli space of
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complex curves (see the next subsection for precise definitions). Again some
series in an infinite number of variables arises. All number related to surfaces
of genus less than or equal to 3 were computed using algebraic geometry.

E. Witten conjectured [Wl] that the partition functions for both approaches
coincide. The reason for this conjecture is an irrational (for mathematicians)
idea, that gravity is unique.

Our way to compute the partition function for the second approach (and
thus to check Witten's conjecture) uses Feynman diagram techniques and
matrix integrals but in another way. Our matrix integral does not look like
the standard matrix integral from the first variant of gravity. The coincidence
of the two integrals is a nontrivial identity and was proven (in several ways)
using the equivalence of noth integrals to KdV equations.

1.2. Notations. Let g and n be integers satisfying the conditions

0^0, n>0, 2 - 2g - n< 0.

Denote by M^n the moduli orbispace (for this notion see Appendix A) of
smooth complete complex curves of genus g with n distinct marked points
Xι,...,xn9 and Λg^n the Deligne-Mumford smooth compactification (see
[M], footnote on page 285). It is the moduli orbispace of complete connected
curves C with n distinct marked points xt satisfying the following conditions:

(1) all singularities of C are ordinary double points,
(2) the marked points are smooth,

(3) the Euler characteristic of any connected component of C\(Sing(C)u
{%!,..., xn}) is negative and the sum of these numbers is equal to 2 — 2g — n.

Both spaces Jtg^ and M9tlΛ will be endowed with the usual (Hausdorff) topol-
ogy of an analytic space.

Let <gi9 / = ! , . . . , « be line bundles on M^n. The fiber of J^ at (C;
*ι , . . . , xn) is the cotangent space 7̂ * C.

Introduce the infinite sequence of indeterminates τ 0 ,τ l 9 . . . . Let dl9...,dn

be non-negative integers satisfying

Σ di = dwic^g.n = 3g - 3 + n.
t = l

Denote by <τdl . . . τdn) the intersection index

ί Π

For example, <τ0τ0τ0> = 1, <T!> = -L (see [Wl]). By Arakelov's theorem all
the numbers <τdl . . . τdn> are non-negative ([M]).

We set <τdl . . . τdn) equal to zero if the "genus" g, defined by the formula

0 = τ Σ rf,-/ι+
3\ί=ι

is not an integer or if n = 0. In this way we have defined a linear functional
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The generating function proposed by E. Witten is a formal series in another
sequence of indeterminates t0,t1 , . . . :

F(t0,tl9...) = exp ttτ = Σ <^τk^ > Π
\ \ί = 0 ) I (k) i = Q Ki\

Witten's conjecture asserts that the series F coincides with the partition
function in the standard matrix model theory and, in particular, obeys the
Korteweg-de Vries hierarchy, the first equation of which is the classical KdV
equation

dt1 dt0 12

Recently E. Witten proposed a generalization of this conjecture (see Sect.
4.3).

1.3. Statements. Let A be a positive definite hermitian N x N matrix. Denote
by dμA(X} the probability measure on the vector space of hermitian NxN
matrices given by the density

^/2
I VA + *. J. Λ. I Ί -

CΛ exp - —^— dX,

The constant CΛ is chosen so that the condition j dμΛ(X} = 1 is satisfied.
Define functions ti9 i = 0, 1, . . . of the matrix Λ:

where (2i - 1)!! = 1 - 3 . . . - (21 - 1).

Theorem 1.1. The formal series F(t0(A), t± (A), . . . ) is an asymptotic expansion of

logί jexpί^—trJ

when Λ~l ->0.

The proof of this theorem is contained in Sect. 3.2. For any fixed size of
matrix A the functions ti(Λ), for / = 0, . . . , TV — 1 are algebraically indepen-
dent. So, to obtain from Theorem 1.1 the terms in the series Fup to any fixed
order, we have to take the integral over the space of matrices of sufficiently
large size.

Using Theorem 1.1 we prove

Theorem 1.2. The series Qxp(F) in variables 7^ ί + 1:= t i / ( 2 i + 1)!! is a τ-func-
tionfor the KdV-hierarchy.

It follows from Theorem 1.2 that Witten's conjecture is true. At the mo-
ment we know at least 3 different proofs of Theorem 1.2. The shortest proof
is contained in Sects. 4.1 and 4.2. Other proofs (see [K2, W2]) are more com-
plicated.

One can easily deduce from Theorem 1.1 that for any n ̂  0 the integral

S (tr X3)" dμΛ(X)

is a polynomial in variables tt. The following theorem generalizes this fact:
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Theorem 1.3. There exists a linear map

such that for any positive definite hermitian matrix A and for any
P £ Q [*ι •> X3 •> - ] one has

This theorem is proven in Sect. 3.3. Some conjectures concerning 7 are
presented in Sect. 3.4.

2. Reduction to the "Combinatorial" Problem

2.1. Strebel Differentials and Ribbon Graphs. In this section we will describe
an equivalence, due to R. Penner, J. Harer, D. Mumford and W. Thurston be-
tween the "decorated" moduli space of algebraic curves and the moduli space
of ribbon graphs (see Th. 2.2). We choose here the version of this equivalence
based on conformal geometry and results of K. Strebel.

A quadratic differential φ on a Riemann surface C of finite type is a holo-
morphic section of the line bundle (Γ*)®2. A nonzero quadratic differential
defines a flat metric on the complement of the discrete set of its zeroes accord-
ing to a formula in a local coordinate z:

I φ (z) I I dz 1 2 , where φ = φ (z) dz2.

A horizontal trajectory of a quadratic differential is a curve along which
φ(z)dz2 is real and positive. Jenkins-Strebel quadratic differentials are those
for which the union of nonclosed trajectories has measure zero.

Nonclosed trajectories of a JS differential decompose the surface into the
maximal ring domains swept out by closed trajectories. These ring domains
can be annuli or punctured disks. All trajectories from any fixed maximal
ring domain have the same length, the circumference of domain. In late 60's
K. Strebel proved the following theorem:

Theorem 2.1. For any connected Riemann surface C and n distinct points
*!,..., xn ε C, n > 0, n > χ (C) and n positive real numbers p±,..., pn there
exists a unique JS quadratic differential on C\{x1 ? . . . , xn] whose maximal ring
domains are n punctured disks Dt surrounding points xt with circumference pt.

This theorem is essentially Theorem 23.2 (for n = 1) and Theorem 23.5 (for
n ^ 2) in [S]. The reader can also see a recent exposition of StrebeΓs theory in
[Z]. In this section we consider only compact surfaces.

The union of all nonclosed trajectories and zeroes of a JS differential φ is
a finite graph (= 1-dimensional CJΓ-complex) Γφ embedded in the surface.
A vertex of Γφ which is a zero of φ of kth order has valency k + 2 ̂  3. The
complement to Γφ consists of open disks, hence we obtain a cell decomposi-
tion of C. The graph Γφ carries two additional structures

(1) for each vertex a cyclic order on the set of germs of edges meeting this
vertex is fixed, (we say that Γφ is a ribbon graph),

(2) to each edge is attached a positive real number, its length (a metric on the
graph).
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graph surface
Fig. 1

Fig. 2

In the reverse direction, for any (connected) finite ribbon graph Γ with
metric whose valency at each vertex is greater than or equal to 3 we can con-
struct JS differential.

The first step is to replace vertices by small disks, replace edges by orient-
ed open ribbons and glue them at each vertex according to the cyclic order
chosen for this vertex (see Fig. 1). In this way we obtain an oriented non-
compact surface on which the graph is drawn. We can divide this surface into
rectangles, where each rectangle is homeomorphic to the product of the cor-
responding edge of the graph by [0, + oo). Endow each rectangle by the stan-
dard flat metrics of the semistrip with width equal to the length of the corre-
sponding edge of Γ. After isometrically gluing together all these rectangles we
obtain a surface with a flat metric defined almost everywhere. The surface is
glued from a finite number of infinite tubes (see Fig. 2). It is easy to see that
there exists a unique complex structure on this surface compatible with the
metric. This surface is a compact Riemann surface C minus a nonempty sub-
set [xι,..., xn} a C. There exists a unique quadratic differential on C whose
trajectories restricted to the semistrips are the standard vertical intervals.

Hence we have proved the following result:

Theorem-Notation 2.2. Let Jί™™* denote the set of equivalence classes of con-
nected ribbon graphs with metric and with valency of each vertex greater than or
equal to 3 such that the corresponding noncompact surface has genus g and n
holes numbered by !,...,« (numbered graphs). The map JigtH x R+ -> ̂ ™mb

which associated to the surface C and numbers Pi, ...9pn the critical graph of
the canonical ^-differential (from Theorem 2.1) is one-to-one. D
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We can endow the spaces ^/,°π

mb with some natural topology and orbispace
structure (see Appendix B). The isomorphism from Theorem 2.2 is an isomor-
phism of orbispaces.

The combinatorial type of the underlying ribbon graphs defines a stratifica-
tion on J?l°™b with the dimension of a stratum equal to the number of edges.
The open strata corresponds to the 3-valent graphs and have dimension equal
to 6g — 6 + 3«.

Remarks. Probably D. Mumford was the first who noticed that the stratifica-
tion of the moduli space arises from Strebel theorems, see [H]. R. Penner [PI]
described a stratification of JίgtΛ x R+ using hyperbolic geometry. In his pic-
ture simplicial coordinates on strata arose and lead to another homeomor-
phism Jίβtn x R"+ -> M^'.

Both stratifications are combinatorially equivalent, but geometrically they
are different. R. Penner uses the name "fatgraph" for ribbon graphs. He calls
"the decorated Teichmuller space" the universal cover of Jί9tH x R+ .

Example, g = 0, n = 3. Recall that JίQ^ is the one point set. There are 7 num-
bered graphs (see Fig. 3). M™™* consists in 3 copies of R+ and 4 copies of
R+. The map ^c

t°
mb->R+ given by the triple ( P ι 9 p 2 9 p 3 ) of perimeters of

tubes is a homeomorphism. The "central" 3-dimensional stratum corresponds
to the triples satisfying strict triangle inequalities.

Notations. For a ribbon graph Γ, denote by X(= XΓ) the set of edges of the
graph together with a choice of orientation. Let SQ and s^ be two permutations
of X: s{ is the operation of changing orientation and s0 permutes cyclically
all oriented edges with a common source. The set X0 = X/(s0y is canonically
equivalent to the set of vertices of Γ and the set X1 = X/s1 is equivalent to
the set of edges. Denote by s2 the permutation S Q I S I . The set X2 = X/(s2y
is equivalent to the set of 2-cells of the cell-decomposition associated with Γ
(see Fig. 4). Later we will use the following notation: [x]i9 / = 0,1,2 is the
image of x e X under the projection map X->Xt. The length of an edge eeX1

is denoted by l(e).
It is easy to see that there is an equivalence between

(1) ribbon graphs without isolated vertices,
(2) triples (X, SΌ, s^) where X is a finite set, SO,SIE Aut(Z), Si is a free involu-
tion,
(3) cell decompositions of closed oriented surfaces which have no components
of the type S2 = D°vD2.

2.2. Polygon Bundles. For each integer N let us denote by 517(1) |°jj?b the set
of equivalence classes of all sequences of positive real numbers / 1 ? . . . , 4 ,
1 ^ k ^ TV, modulo cyclic permutations. This set carries a natural topology:
when /; -> 0 for some / then the limit is obtained by removing the z t h term.
Each sequence has as automorphism group a finite cyclic group. This provides
5ί/(l)|°yb with an orbispace structure. Define BU(l)comb to be the direct limit
of£f/(l)!7boverall7V.

In other words 5C/(l)comb is the moduli (orbi) space of numbered ribbon
graphs with metric whose underlying graphs are homeomorphic to the circle.
There is an S1-bundle over this orbispace whose total space EU(l)comb is an
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ordinary space. One can check that the space EU(ί)comb is contractible. This
fact explains our notations. The fiber of the bundle over the equivalence class
of sequences ^ , . . . , lk is a union of intervals of lengths /i , . . . , 4 with pair-
wise glued ends, i.e. a polygon.

The moduli space of ribbon graphs with metric Jί™™b maps in an obvious
way to BU(\)comb (if we fix /, 1 g / g Λ): the iih boundary component of a
ribbon graph with metric is a polygon.

Theorem 2.3. The map JtβtΛ x R"+ -> (JBt/(l)comb)li, which is the composition of
the isomorphism Jίθtn x R"+ ^ Jί™™b and maps to BU(ί)comb described above,
extends continuously to Mg%n x R+. The inverse images of ' S] [ -bundles are natu-
rally ίsomorphίc to the circle bundles associated with the complex line bundles

The proof of this theorem is quite technical (see some information in
Appendix B).

Let us now compute the first Chern class of the circle bundle on
£t/(l)comb. The points of £I/(l)comb can be identified with pairs (p,S) where
p is a positive real number and S is a nonempty finite subset of the circle
R/pZ. Here p is the perimeter of the polygon, edges of the polygon are con-
nected components of R/pZ\S. Denote by 0 ^ φί< - - - < φk< p representa-
tives of points of S. The lengths of the edges of the polygon are

li = φi+1-φi (i= ! , . . . ,&- 1), lk = P + Φι-Φk

Denote by α the 1-form on ET/(l)comb equal to

Σ Itlpxdfalp).
i = l

It is easy to check that α is well-defined and that the integral of α over each
fiber of the universal bundle £[/(l)comb^£t/(l)comb is equal to - 1. The differ-
ential dα is the pullback of a 2-form ω on the base £t/(l)comb,

ω = Σ

So, ω is obtained by transgression from α and we have proved the following
result:

Lemma 2.1. 77z£ pullback ω, of the form ω under the / th map Jίg^ x R + -»
BU(ί)comb represents the class ^(J^). D

Denote by π : Jί™™b -» R + the projection given by the sequence of perime-
ters of tubes. We have the following formula for intersection numbers:

... τ d n >= f Πωf ' ,
π-Γ(p*) i=l

where p+ = (p1,..., pn) is an arbitrary sequence of positive real numbers. The
only problem with this formula is to describe the orientation of open strata in

arising from the complex structure.



Intersection Theory on Moduli Space of Curves 9

3. Matrix Integrals

3.1. Main Identity. Denote by Ω the two-form on open strata of Jl™™* equal
to the sum ΣP?ωί The reason for this choice is explained by the obvious

Lemma 3.1. The restriction of the form Ω to the fibers ofπ has constant coeffi-
cients in the coordinates (l(e)), e e X±. Ώ

One can check that Ω is nondegenerate along the fibers of π and defines
some orientation compatible along the codimension one strata (see Lemma 3.2
in Sect. 3.3 and Lemma C.I in Appendix C).

Denote by d the complex dimension of JίgtΛ9 d=3g -3 + n. The volume
of the fiber of π with respect to Ω is

π-^(p*) d\ d\ π-Γ(p*)

^ JL Pidί ,
= sgn x Σ= Π -̂ y x <τdl

 τdn> -

The symbol sgn equals ± 1 and denotes the ratio of the orientation com-
ing from the complex structure and the orientation cominmg from the symplec-
tic structure. Recall that <τ d l . . . τdn> ^ 0, so by the positivity of the volume
sgn = + l.

Let λi9 ι = l, . . . , n be real positive numbers. The Laplace transform of
volumes of fibers of π is

oo oo n

J J Π dPi x exρ(-Σ λiPt) x vol(π l

= Σ
d*:Σdi

= Σ
dφ:ίdi = d i=l "f I

Let us write the left-hand side of this equality in the following form:

L.H.S.= f b ρxexp(-ΣA ί j P i )x Π \dl(e)\,
Jt^b eeXi

where ρ is a positive function defined on open cells, ρ is equal to the ratio of
measures:

i \ x Π \ d l ( e ) \ .
ί=l

From Lemma 3.1 it follows that ρ is locally constant and depends only on
the combinatorial type of a 3-valent graph. It is shown in Appendix C that

ρ = 22n + 5g~5 = 4d 21'9 = 2d +*X l~**°

The integral

Σ Λ * Λ ) x Π \dl(e)\

is equal to the sum of integrals over all open strata in ̂ °w

mb.
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For an edge e = [x]1eXί denote by λ(e) the sum λ([x]2) + λ ( [ s 1 x ] 2 ) ,
where λ is considered as a function λ:x2->R+. For any ribbon graph

-Σ*,A) = exp(- Σ /(Mι)Λ(M2))= Π exp(-/(*)*(*))-
\ xeX / eeAΊ

Let us denote by Gg^n the set of equivalence classes of 3-valent graphs with
numbering X2 = {1,...,«} from ^c,°M

mb. Now we can compute the integral:

= Σ
ΓeG g ) «

π —
.e..,, # Aut Γ «*, JΓ(e) '

After multiplication by an appropriate power of 2 we obtain the main
identity :

Λ (24 -I)" 2-**°

Example, g = 0, « = 3. G0,3 contains 4 graphs, all of which have no nontrivial
automorphisms (see Fig. 3). The main identity for this case is

λ2) (λ,

αi
5.2. Matrix Model (the Proof of Theorem 1.1). Let /I = diag(Λ1? . . . , /1N) be
a positive diagonal hermitian matrix. Denote (as in Sect. 1.3) by ti(A) the
expression

Let us take a formal sum over all g, n of the main identity from the prev-
ious section:

F(t0(Λ)9 x - x

=
Aut Γ

_
, λ(e) '

In the last term GN denotes the set of equivalence classes of connected
nonempty 3-valent ribbon graphs together with maps c: X2 -> {1, . . . , N} (col-
orings of X2 in N colors), λ^x]^ = Λc([xW + Λ([Sljc]2)


